IEEE1888テクニカルワークショップ

第1回 電力計測インターネット化の実践

講師 落合秀也

(東京大学大学院 情報理工学系研究科 講師) 主催:東大グリーンICTプロジェクト

2014年10月31日 13:00 ~ 17:00 @ 工2号館 10階 電気系会議室5

本テクニカルワークショップ開催の目的

・技術を身につける

- ビル設備のインターネット・オンライン化の技術

- 電力計測データの収集ネットワークの技術

- 実物を見て、触れ、体で覚える

 Modbusデバイス/RS485とはどんなもの?
 M2Mゲートウェイってどんなもの?
- システムの原理・仕組みについて考える
 ムゼ、そのような構成なのか
 「システムのあるべき姿」の感覚を養う

テクニカルワークショップのコース

- 第1回目
 日時: 10月31日 13:00 17:00
 テーマ: 電力計測インターネット化の実践
- 第2回目

日時: 11月12日 13:00 – 17:00 テーマ: M2Mゲートウェイのプログラミング入門

• 第3回目 日時: 12月12日 13:00 – 17:00 テーマ: システム設計の実践

電力計測インターネット化の実践

Modbus/RS485電流センサから取得した計測値を、 M2Mゲートウェイを介して、インターネット上のサーバ に送信。これにより、システムの原理を、体で理解する。

Modbus / RS485 ネットワーク

雷力計測とエネルギー診断

- - -課金
 - ピークカット・ピークシフト(デマンド制御)
 - エネルギー診断 (見える化など)
- エネルギー診断では
 - 多数の分電盤で計測 A RS485通信メディアの利用
 M2Mゲートウェイ - 計測値を自動で収集する - リモート診断をしたい
 - → インターネット上のサーバの利用

M2Mゲートウェイとは

- ・ M2Mとは、Machine-to-Machine (機械間)の意味
 - M2M通信 = 機械間通信と呼ぶ

実際には、末端の機器(e.g., 電力メータ)は、インターネット・プロトコルを話さない

本日のゴールと作業のステップ

本日の流れ

- Modbus電流計のセットアップ
 - CTの取付
 - RS485ケーブルの配線
 - デバイスIDの設定
- IEEE1888 Modbus電流計 GWのセットアップ
 セットアップの前準備
 - コマンド / 設定パラメータを理解する
 - 設定を入れる
 - サーバのデータを確認
- まとめ

本日の流れ

- Modbus電流計のセットアップ
 - -CTの取付
 - -RS485ケーブルの配線
 - デバイスIDの設定
- IEEE1888 Modbus電流計 GWのセットアップ
 セットアップの前準備
 - コマンド / 設定パラメータを理解する
 - 設定を入れる
 - サーバのデータを確認
- まとめ

Modbus電流計へのCTの取付

本日は CTO につないでください (それぞれ2台とも) 電流の絶対値を計測するため、 「緑線と白線」の向き(極性)は関係無し

RS485ケーブルの配線 (1/3) Modbus 電流計 (末端のノード)

5V GND A B

長距離の場合 120Ωの抵抗を取り付ける (今回は不要)

RS485はビルに適した通信メディア

- 2線式 (差動方式)
 - ツイストペア線で利用する (1.2km以上も伸ばせる)

- マルチドロップ接続
 - 同時に32ノード以上を接続可能
- ・半二重通信方式
 -送信モード or 受信モードを切り替えて通信を行う
- シリアル通信
 - 通常: 9600bps, 19200bps (高速 100kbps, 10Mbps)。

ツイストペア線の特徴

RS485の通信ケーブル以外にも、 Ethernetケーブルなどにも使われている

RS485はシリアルデータを 差動信号に変えて伝送する

遠く離れた地点(信号線の電位に揺らぎが生じることもある)でも、 相対的な電位差で0か1かを判断できる。

マルチドロップ方式でネットワーク構築

ModbusデバイスIDの設定方法

ロータリ・スイッチの設定で、 ModbusのデバイスIDを設定

写真の場合は37

本日のModbusデバイスIDの設定 (&現在のセットアップ状況の確認)

本日の流れ

- Modbus電流計のセットアップ
 - CTの取付
 - RS485ケーブルの配線
 - デバイスIDの設定
- IEEE1888 Modbus電流計 GWのセットアップ
 - セットアップの前準備
 - コマンド / 設定パラメータを理解する
 - 設定を入れる
 - -サーバのデータを確認
- まとめ

IEEE1888 Modbus電流計 GWの 設定準備 (機器側)

プログラマブルM2Mゲートウェイには、本日の演習用に、すでにGWプログラムがインストールされています

IEEE1888 Modbus電流計 GWの 設定準備 (パソコン側) (2/3)

Putty.exe プログラムを利用する場合

(Puttyは http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html か らダウンロード可能)

①シリアル通信モード(Serial)を選択

PuTTY Configuration			
Category:			
Session Session Session Self Self Self Self Self Self Self Self	Basic options for your PuTT Ression Specify the destination you want to connect to Serial line Speed COM22 S 00 Connection type: Raw Telnet Rlogin SSH Serial Load, save or delete a stored session Saved Sessions		
	Default Settings Load Save Delete		
iSSH iSerial	Close window on exit: Always Never Only on clean exit Open Cancel		

② Serial詳細設定を選択

IEEE1888 Modbus 電流計 GWの 設定準備 (パソコン側) (3/3)

④ Openをクリックして接続開始

前スライドより

利用可能なコマンド

conf: 設定モードに入る ('#' 入力になる) exit: 実行モードに戻る ('>' 入力になる) show: 設定内容・システム状態を表示する save: 設定内容を不揮発性メモリに保存する reboot: 再起動する help or ?: コマンド&パラメータを表示する

IEEE1888 Modbus電流計 GWの コマンド練習

helpコマンドを実行してみる!! x 🖉 COM20 - PuTTY > help IEEE1888 Modbus Current Meter GW v1.0 -- Basic Command Set -conf: goes into configuration mode (indicated as '# ') exit: returns to running mode (indicated as '> ') show: prints out the config save: saves the config into the EEPROM reboot: reboot the system help or ?: prints out this message - Configuration Parameters --Local Network MAC=xx:xx:xx:xx:xx:xx (readonly) - DHCP={true, false} - IP=x.x.x.x - NM=x.x.x.x – GW=x.x.x.x - DNS=x.x.x.x NTP Time Server – NTP1=x.x.x.x – NTP2=x.x.x.x Modbus Device IDs DEV00=xx (CT00-CT04) DEV01=xx (CT05-CT09) DEV02=xx (CT10-CT04) DEV03=xx (CT15-CT19) DEV04=xx (CT20-CT24)

コマンド&設定パラメーター覧が表示されます。

show コマンドを実行してみる!!

PCOM20 - PUTTY						
> show						
Local Net	work Configuration					
MAC=b0:12:	MAC=b0:12:66:01:09:5f					
DHCP=true						
IP=192.168	8.11.17					
NM=255.255	.255.0					
GW=192.168	.11.1					
DNS=192.16	58.11.1					
NTP1=133.2	43.238.243					
NTP2=192.4	3.244.18					
Modbus De	vice Configuration					
DEV00=0	(CT00-CT04)					
DEV01=0	(CT05-CT09)					
DEV02=0	(CT10-CT14)					
DEV03=0	(CT15-CT19)					
DEV04=0	(CT20-CT24)					
DEV05=0	(CT25-CT29)					
DEV06=0	(CT30-CT34)					
DEV07=0	(CT35-CT39)					
DEV08=0	(CT40-CT44)					
DEV09=0	(CT45-CT49)					
DEV10=0	(CT50-CT54)					
DEV11=0	(CT55-CT59)					
DEV12=0	(CT60-CT64)					
DEV13=0	(CT65-CT69)					
DEV14=0	(CT75-CT79)					
DEV15=0	(CT75-CT79)					

現在の設定内容が表示されます。

IEEE1888 Modbus電流計 GWの 設定変更方法

■設定内容を変更するには

- 1. conf コマンドを実行 (送信動作が止まり、設定モードになる)
- 2. パラメータを設定する (必要に応じてshowコマンドで設定内容を確認する)
- 3. saveコマンドを実行 (これにより設定内容を保存する)

4. 再起動 (rebootコマンド)

B COM20 - PuTTY	
>	A
> conf	
# IP=192.168.11.31	
IP=192.168.11.31 OK	
# NM=255.255.255.0	
NM=255.255.255.0 OK	
# GW=192.168.11.254	
GW=192.168.11.254 OK	
# DNS=192.168.11.254	
DNS=192.168.11.254 OK	
#	
# HOST=192.168.11.250	
HOST=192.168.11.250 OK	
<pre># ID=http://gutp.jp/interop03/</pre>	
ID=http://gutp.jp/interop03/ OK	
# save	
Save OK	-
	-

一連の設定変更の流れ

ネットワーク設定

```
--- Local Network Configuration ---
 MAC=b0:12:66:01:09:5f
 DHCP=true
 IP=192.168.11.17
 NM=255.255.255.0
 GW=192.168.11.1
 DNS=192.168.11.1
 NTP1=133.243.238.243
 NTP2=192.43.244.18
```

Modbusデバイス設定

--- Modbus Device Configuration ---DEV00=0 (CT00-CT04) DEV01=0 (CT05-CT09) DEV02=0 (CT10-CT14) DEV03=0 (CT15-CT19) DEV04=0 (CT20-CT24) DEV05=0 (CT25-CT29) DEV06=0 (CT30-CT34) DEV07=0 (CT35-CT39) DEV08=0 (CT40-CT44) DEV09=0 (CT45-CT49) DEV10=0 (CT50-CT54) DEV11=0 (CT55-CT59) DEV12=0 (CT60-CT64) DEV13=0 (CT65-CT69) DEV14=0 (CT75-CT79) DEV15=0 (CT75-CT79)

このModbus 電流計 GWは、 最大で 16台のModbusデバイス に対応することができる

DEVxx = y

を指定することで、GWの内部で、 xx * 5 ~ xx * 5+4 にCT番号を対応付けする

例えば、DEV08に指定された Modbus電流計のCTには、 40, 41, 42, 43, 44 という番号が与えられる

なお =0 となっているDEVxxは 無効な(=使われていない)もの として扱われる

IEEE1888通信設定

--- IEEE1888 Configuration ---

HOST=fiap-sandbox.gutp.ic.i.u-tokyo.ac.jp PATH=/axis2/services/FIAPStorage PORT=80 ID=http://gutp.jp/GroupX/A

HOST, PATH, PORTで指定される IEEE1888サーバに対して、 WRITEでデータを送信することを意味する。

IDには、ポイントIDのプレフィックスを指定する。 ポストフィックスには、CT番号が自動的に付与される。 例えば、CT番号が40のポイントは、上記の場合、 http://gutp.jp/GroupX/A40 というポイントIDとなる

なお、無効なデバイスに関しては 送信されない。

システム状態

--- System Status ---UPLOAD=OK TIME=2014-10-29 22:45:27 INT=60

TIMEは 現在時刻(日本時間)を表す

INTは送信間隔(秒)を表す (*) 今回は60に固定

UPLOADは、送信状態を示す。 OK: 前回の送信操作で成功した NG(xxx):前回の送信操作でxxxの理由で失敗した NG(NTP): 時刻合わせに失敗している NONE: まだ送信操作を行っていない

課題

- ・以下のように、GWを設定してみよう
 - ネットワーク接続
 - DHCP を利用
 - NTPは 133.243.238.243 と 192.43.244.18 を利用
 - Modbusデバイス設定
 - DEV00にデバイス1
 - DEV01にデバイス2
 - IEEE1888設定
 - •送信先:http://133.11.168.98/axis2/services/FIAPStorage

Xにはグループの番号を設定する

・ポイントID: http://gutp.jp/GroupX/A

設定が完了したら

- 設定内容を確認しよう
 showコマンドを実行
- ・ 設定内容を保存しよう
 saveコマンドを実行
- 再起動しよう
 rebootコマンドを実行
- ・状態を確認しよう

 showコマンドを実行し、System Statusを確認

サーバのデータを確認

ワークショップ用に立ち上げているサーバ、 http://133.11.168.98/

を確認する

Sensors in this FIAPStorage

Point ID	Time	Value
http://gutp.jp/GroupX/A00	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A01	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A02	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A03	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A04	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A05	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A06	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A07	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A08	2014-10-30T12:09:00.000+09:00	0
http://gutp.jp/GroupX/A09	2014-10-30T12:09:00.000+09:00	0

TIPS: 電流を計測してみよう

本日の流れ

- Modbus電流計のセットアップ
 - CTの取付
 - RS485ケーブルの配線
 - デバイスIDの設定
- IEEE1888 Modbus電流計 GWのセットアップ
 - セットアップの前準備
 - コマンド / 設定パラメータを理解する
 - 設定を入れる
 - サーバのデータを確認
- まとめ

ビル内に RS485が用いられる理由

通	信メディア	施工性	安定性	汎用性	速度	
有線	Ethernet (LANケーブル)	Δ	0	0	Ô	
	RS485	0	0	Δ	Δ	
無線	Wi-Fi (無線LAN)	0	Δ	0	0	
	ZigBee	Ô	Δ	Δ	Δ	
重要なポイント						

施工性、安定性の優れるRS485が歴史的に良く用いられている 汎用的でない(家電量販店では買えない)ので、馴染みはない、かもしれない。 速度は出ないが、センサデータのやり取りには十分であることも多い。 (*)他にもたくさんあるが、ここでは割愛する

M2Mゲートウェイの役割

- インターネット・プロトコルを話さない機器と対話しつ
 つ、インターネット上のサーバとM2M通信を行う
- 今回のケース
 - 電流計とModbus(RS485上)で対話し、読み出したデータ を、IEEE1888方式で、インターネット上のサーバに送信。
- 機器がインターネット・プロトコルを話さない理由
 - RS485通信メディアの方が施工性が良い
 - RS485では、低速のシリアル通信が主流 (IP over RS485 方式は、現在、研究段階)

次回: M2Mゲートウェイのプログラミング入門

プログラマブルM2Mゲートウェイ

- 日時:11月12日 13:00-17:00
- 場所:東京大学工2号館10階電気系会議室5
- 詳細: <u>http://www.gutp.jp/event/event1.html</u>